Últimos tweets:

*2
*4
*1

(Fuente: xcakyo, vía meconviertoengeek)

s-c-i-guy:

Viruses Reconsidered
"The discovery of more and more viruses of record-breaking size calls for a reclassification of life on Earth."
The theory of evolution was first proposed based on visual observations of animals and plants. Then, in the latter half of the 19th century, the invention of the modern optical microscope helped scientists begin to systematically explore the vast world of previously invisible organisms, dubbed “microbes” by the late, great Louis Pasteur, and led to a rethinking of the classification of living things.
In the mid-1970s, based on the analysis of the ribosomal genes of these organisms, Carl Woese and others proposed a classification that divided living organisms into three domains: eukaryotes, bacteria, and archaea. (See “Discovering Archaea, 1977,” The Scientist, March 2014) Even though viruses were by that time visible using electron microscopes, they were left off the tree of life because they did not possess the ribosomal genes typically used in phylogenetic analyses. And viruses are still largely considered to be nonliving biomolecules—a characterization spurred, in part, by the work of 1946 Nobel laureate Wendell Meredith Stanley, who in 1935 succeeded in crystallizing the tobacco mosaic virus. Even after crystallization, the virus maintained its biological properties, such as its ability to infect cells, suggesting to Stanley that the virus could not be truly alive.
Recently, however, the discovery of numerous giant virus species—with dimensions and genome sizes that rival those of many microbes—has challenged these views. In 2003, my colleagues and I announced the discovery of Mimivirus, a parasite of amoebae that researchers had for years considered a bacterium. With a diameter of 0.4 micrometers (μm) and a 1.2-megabase-pair DNA genome, the virus defied the predominant notion that viruses could never exceed 0.2 μm. Since then, a number of other startlingly large viruses have been discovered, most recently two Pandoraviruses in July 2013, also inside amoebas. Those viruses harbor genomes of 1.9 million and 2.5 million bases, and for more than 15 years had been considered parasitic eukaryotes that infected amoebas.
Now, with the advent of whole-genome sequencing, researchers are beginning to realize that most organisms are in fact chimeras containing genes from many different sources—eukaryotic, prokaryotic, and viral alike—leading us to rethink evolution, especially the extent of gene flow between the visible and microscopic worlds. Genomic analysis has, for example, suggested that eukaryotes are the result of ancient interactions between bacteria and archaea. In this context, viruses are becoming more widely recognized as shuttles of genetic material, with metagenomic studies suggesting that the billions of viruses on Earth harbor more genetic information than the rest of the living world combined. These studies point to viruses being at least as critical in the evolution of life as all the other organisms on Earth.
Read More

s-c-i-guy:

Viruses Reconsidered

"The discovery of more and more viruses of record-breaking size calls for a reclassification of life on Earth."

The theory of evolution was first proposed based on visual observations of animals and plants. Then, in the latter half of the 19th century, the invention of the modern optical microscope helped scientists begin to systematically explore the vast world of previously invisible organisms, dubbed “microbes” by the late, great Louis Pasteur, and led to a rethinking of the classification of living things.

In the mid-1970s, based on the analysis of the ribosomal genes of these organisms, Carl Woese and others proposed a classification that divided living organisms into three domains: eukaryotes, bacteria, and archaea. (See “Discovering Archaea, 1977,” The Scientist, March 2014) Even though viruses were by that time visible using electron microscopes, they were left off the tree of life because they did not possess the ribosomal genes typically used in phylogenetic analyses. And viruses are still largely considered to be nonliving biomolecules—a characterization spurred, in part, by the work of 1946 Nobel laureate Wendell Meredith Stanley, who in 1935 succeeded in crystallizing the tobacco mosaic virus. Even after crystallization, the virus maintained its biological properties, such as its ability to infect cells, suggesting to Stanley that the virus could not be truly alive.

Recently, however, the discovery of numerous giant virus species—with dimensions and genome sizes that rival those of many microbes—has challenged these views. In 2003, my colleagues and I announced the discovery of Mimivirus, a parasite of amoebae that researchers had for years considered a bacterium. With a diameter of 0.4 micrometers (μm) and a 1.2-megabase-pair DNA genome, the virus defied the predominant notion that viruses could never exceed 0.2 μm. Since then, a number of other startlingly large viruses have been discovered, most recently two Pandoraviruses in July 2013, also inside amoebas. Those viruses harbor genomes of 1.9 million and 2.5 million bases, and for more than 15 years had been considered parasitic eukaryotes that infected amoebas.

Now, with the advent of whole-genome sequencing, researchers are beginning to realize that most organisms are in fact chimeras containing genes from many different sources—eukaryotic, prokaryotic, and viral alike—leading us to rethink evolution, especially the extent of gene flow between the visible and microscopic worlds. Genomic analysis has, for example, suggested that eukaryotes are the result of ancient interactions between bacteria and archaea. In this context, viruses are becoming more widely recognized as shuttles of genetic material, with metagenomic studies suggesting that the billions of viruses on Earth harbor more genetic information than the rest of the living world combined. These studies point to viruses being at least as critical in the evolution of life as all the other organisms on Earth.

Read More

(vía scinerds)

*4
lensblr-network:

jaimeabbariao:

Danbo Meets Library

 

lensblr-network:

jaimeabbariao:

Danbo Meets Library

 

*52
kenobi-wan-obi:

Lunar Eclipse over Peru by Juan Carlos Casado


  A photo composite has captured a sequence of images during the total lunar eclipse of 2007 August 28 over Chinchero ruins, near Cuzco, Peru.
  
  Located at 3200 m altitude and dates back to early 1600’s, Chinchero is an important archaeological site which was a center of agricultural production in the Inca era.
  
  The ruins consist of a series of nested terraces rising up to a plateau.

kenobi-wan-obi:

Lunar Eclipse over Peru by Juan Carlos Casado

A photo composite has captured a sequence of images during the total lunar eclipse of 2007 August 28 over Chinchero ruins, near Cuzco, Peru.

Located at 3200 m altitude and dates back to early 1600’s, Chinchero is an important archaeological site which was a center of agricultural production in the Inca era.

The ruins consist of a series of nested terraces rising up to a plateau.

(vía scinerds)